¡¶¹¬ÈçÃôÈ«Ìס·| ¤¢¤¤¤¶¤ï¤ß¤ÛÔÁÓïÖÐ×Ö - Ðж¯Æ¬HD..."/> ÏÖÔÚ»ÃæÀÆÅÆÅÂúÁ³µÄЦÒâÕÚ¶¼ÕÚ²»×¡£º¡°ÔõôÑù£¿ÎÒ´óËï×Ó»¹¹ÔÂ𣿡±"/>
¡¶¡¶¹¬ÈçÃôÈ«Ìס·| ¤¢¤¤¤¶¤ï¤ß¤ÛÔÁÓïÖÐ×Ö - Ðж¯Æ¬HD...¡·¾çÇé¼ò½é£ºÏÖÔÚ»ÃæÀïÆÅÆÅÂúÁ³µÄЦÒâÕÚ¶¼ÕÚ²»×¡£ºÔõôÑùÎÒ´óËï×Ó»¹¹ÔÂð¡¶¹¬ÈçÃôÈ«Ìס·| ¤¢¤¤¤¶¤ï¤ß¤ÛÔÁÓïÖÐ×Ö - Ðж¯Æ¬HD...ɱ¹ØÓÚÒÑÔÚÊÂÒµÉÏСÓгɼ¨¡¢¾¼Ã×ÔÁ¦µÄ30+Å®ÐÔ¶øÑÔËýÃÇÔÚÔñżʱԽ·¢×¢Öؾ«Éñ²ãÃæµÄÆõºÏËýÃÇÅÎÔ¸ÕÒµ½Ò»¸ö¼ÈÄÜÃ÷È·×Ô¼ºÐÄÌïÌìÏÂÓÖÄܲ¢¼çǰÐеÄÅóÙÖ»¹ÜÏÖʵÖв»ÉÙÄÐÐÔ¸üÇàíùÄêÇáÅ®ÐÔµ«ÕâЩŮÐÔ²¢Î´Òò´Ë·ÅÆú×·ÇóÕæ°®ËýÃÇÔ¸ÒâÔÚ¾¼ÃÌõ¼þÉÏ×ö³öÍ×ÐֻΪѰµÃÄÇ·ÝÄÑ¿°µÄÐÄÁéÏàͨ¼´±ãδÀ´ÉúÑÄ¿ÉÄÜÃæÁÙÌôÕ½µ«¾«ÉñÌìϵĸ»×ã×ãÒÔÈÃËýÃÇÓÂÍùֱǰ
¡¶¡¶¹¬ÈçÃôÈ«Ìס·| ¤¢¤¤¤¶¤ï¤ß¤ÛÔÁÓïÖÐ×Ö - Ðж¯Æ¬HD...¡·ÊÓÆµËµÃ÷£ºöèħ²ìÑÔ¹ÛÉ«¹þ¹þһЦ£ºÐÇÏó×ÓÄã¶ÔÕâ¸öÊÖ¶ÎÒ²¸ÐÐËȤºÇºÇºÇû´íÎÒÃǶ«º£½©ÃËÀú¾ÎÞÊýÏÈÏÍÑо¿»ýÀÛÒѾÑз¢³öһЩЧ¹û¡ª¡ªÔõÑùÔÚ¼á³ÖÏɽ©ÉíÇûÎȹ̵ÄÇéÐÎϼá³ÖÏÉÇϵĻîÁ¦ÓÉÓÚËýÊÇ»ÆÃ·Ï·ÉíÊÀ³ª¸èÓëËýÀ´ËµÕÕ¾ÉÓÐһЩÐÁ¿àÒÔÊÇʱ³£»á´©²å×ÅÑݳö×Ô¼º½ÏÁ¿×¨³¤µÄ»ÆÃ·Ï·Ñ¡¶ÎÒ»¿ç¹ýºÓ ÇÅÁº¿ç¾¶Î»¾ÓͬÀàÐÍÇÅÁºÌìÏÂǰÏß
¾ÍËãÎÒ×å¾Ü¾øËûµÄÀÕË÷Ïļҡ¢°Í¼ÒÒ»¶¨²»»áËûÃÇʧȥµÄ¿ÉÊÇÌ«ÉÏ´ó³¤ÀÏ¡¶¿ÆÑ§¡·£¨20230203£©Ò»ÖÜÂÛÎĵ¼¶Á2023-02-06 10:16¡¤¿ÆÑ§Íø±àÒë | ·ëάάScience,3 FEB 2023, VOLUME 379 ISSUE 6631¡¶¿ÆÑ§¡·2023Äê2ÔÂ3ÈÕµÚ379¾í6631ÆÚ»¯Ñ§ChemistryComputer-aided key step generation in alkaloid total synthesisÉúÎï¼îÈ«ºÏ³ÉÖÐÅÌËã»ú¸¨ÖúÒªº¦°ì·¨ÌìÉú¡ø ×÷ÕߣºYINGFU LIN, RUI ZHANG, DI WANG, AND TIM CERNAK¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.ade8459¡ø ÕªÒª£º¸ßЧµÄ»¯Ñ§ºÏ³É¹ØÓÚÖª×ãδÀ´¶ÔÒ©Îï¡¢ÖÊÁϺÍÅ©Óû¯Ñ§Æ·µÄÐèÇóÖÁ¹ØÖ÷Òª¼¸Ê®ÄêÀ´¶ÔÊʶÈÖØ´ó·Ö×ÓµÄÄæÏòºÏÉíÆÊÎöÒѾʵÏÖÁË×Ô¶¯»¯×î½üDZÔÚ×éºÏ·¾¶µÄÊý¾Ý±¬Õ¨¶ÔÅÌËã»úÓ²¼þºÍÈí¼þ×é³ÉÁËÌôÕ½×÷Õß̽Ë÷ÁËÒ»ÖÖÅÌËãÕ½ÂÔ½«ÅÌËã»ú¸¨ÖúºÏ³ÉÍýÏëÓë·Ö×Óͼ±à¼ÏàÍŽáÒÔ×î´óÏ޶ȵØïÔÌÉú±¬·¢Îï¼îËùÐèµÄºÏ³É°ì·¨¡ø Abstract£ºEfficient chemical synthesis is critical to satisfying future demands for medicines, materials, and agrochemicals. Retrosynthetic analysis of modestly complex molecules has been automated over the course of decades, but the combinatorial explosion of route possibilities has challenged computer hardware and software until only recently. Here, we explore a computational strategy that merges computer-aided synthesis planning with molecular graph editing to minimize the number of synthetic steps required to produce alkaloids.Asymmetric counteranion-directed photoredox catalysis²î³Ø³Æ·´ÒõÀë×Ó¶¨Ïò¹âÑõ»¯»¹Ô´ß»¯¡ø ×÷ÕߣºSAYANTANI DAS, CHENDAN ZHU, DERYA DEMIRBAS, ECKHARD BILL, CHANDRA KANTA DE, AND BENJAMIN¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.ade8190¡ø ÕªÒª£º¹âÑõ»¯»¹Ô´ß»¯ÒªÊ¹ÓùâÓÕµ¼µÄ·¢É«Íź͵×ÎïÖ®¼äµÄµç×Ó×ªÒÆÀ´Ôö½ø»¯Ñ§·´Ó¦ÐÔÔÚµ×ÎïÓ뷢ɫÍŲ»Ðµ÷µÄÇéÐÎÏ¿ØÖÆÁ¢ÌåÑ¡ÔñÐÔ¿ÉÄܾßÓÐÌôÕ½ÐÔ×÷Õß±¨µÀÁËÒ»Öָ߶ÈÁ¢ÌåÑ¡ÔñµÄÒªÁ콫ÑôÀë×Ó·¢É«ÍÅÓëÊÖÐÔÒõÀë×ÓÅä¶ÔÔÚ·¢É«ÍÅ»¹ÔºóÒõÀë×ÓÓë»î»¯µÄµ×ÎïÅä¶ÔÔÚÕâÖÖÇéÐÎÏÂÑõ»¯±½ÒÒÏ©ÑÜÉúÎï¿É¾ÙÐÐ[2+2]»·¼Ó³É´Ó¶øÓÐÀûÓÚÁ½ÖÖDZÔÚ¾µÏñ²úÆ·ÖÐÒ»ÖÖµÄÐγɡø Abstract£ºPhotoredox catalysis enables distinctive and broadly applicable chemical reactions, but controlling their selectivity has proven to be difficult. The pursuit of enantioselectivity is a particularly daunting challenge, arguably because of the high energy of the activated radical (ion) intermediates, and previous approaches have invariably required pairing of the photoredox catalytic cycle with an additional activation mode for asymmetric induction. A potential solution for photoredox reactions proceeding via radical ions would be catalytic pairing with enantiopure counterions. However, although attempts toward this approach have been described, high selectivity has not yet been accomplished. Here we report a potentially general solution to radical cation¨Cbased asymmetric photoredox catalysis. We describe organic salts, featuring confined imidodiphosphorimidate counteranions that catalyze highly enantioselective [2+2]-cross cycloadditions of styrenes.A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyteÓɹÌÌåµç½âÖÊÇý¶¯µÄÊÒοɳäµçï®¿ÕÆøµç³Ø¡ø ×÷ÕߣºALIREZA KONDORI, MOHAMMADREZA ESMAEILIRAD, AND MOHAMMAD ASADI¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abq1347¡ø ÕªÒª£ºÔÚÄÜÁ¿Ãܶȷ½Ãæï®¿ÕÆøµç³ØÓÐÄÜÁ¦ÓëÆûÓÍµç³Ø¾ºÕùÈ»¶øÔÚ´ó´ó¶¼ÏµÍ³Öз´Ó¦Í¾¾¶ÒªÃ´Éæ¼°Ò»¸ö»òÁ½¸öµç×Ó×ªÒÆ»®·Öµ¼Ö¹ýÑõ»¯ï®£¨Li2O2£©»ò³¬Ñõ»¯Îïﮣ¨LiO2£©×÷ÕßÑо¿ÁËÒ»ÖÖʹÓÃÌÕ´É-¾ÛÒÒÏ©Ñõ»¯Îï»ù¸´ºÏ¹ÌÌåµç½âÖʵÄï®-¿ÕÆøµç³Ø·¢Ã÷Ëü¿ÉÒÔͨ¹ýï®Ñõ»¯ÎLi2O£©µÄÐÎ³ÉºÍÆÊÎö¾ÙÐÐËĵç×ÓÑõ»¯»¹Ô·´Ó¦¸Ã¸´ºÏµç½âÖÊͨ¹ýËĵç×Ó×ªÒÆÀú³ÌÌåÏÖ³ö½Ï¸ßµÄÀë×Óµ¼µçÐÔºÍÎȹÌÐÔ¡ø Abstract£ºLithium-air batteries have scope to compete with gasoline in terms of energy density. However, in most systems, the reaction pathways either involve one- or two-electron transfer, leading to lithium peroxide (Li2O2) or lithium superoxide (LiO2), respectively. Kondori et al. investigated a lithium-air battery that uses a ceramic-polyethylene oxide¨Cbased composite solid electrolyte and found that it can undergo a four-electron redox reaction through lithium oxide (Li2O) formation and decomposition. The composite electrolyte embedded with Li10GeP2S12 nanoparticles shows high ionic conductivity and stability and high cycle stability through a four-electron transfer process.µØÇòÎïÀíѧGeophysicsSmoke-weather interaction affects extreme wildfires in diverse coastal regionsÑÌ-ÌìÆøÏ໥×÷ÓÃÓ°Ïì²î±ðÑØº£µØÇøµÄ¼«¶ËÒ°»ð¡ø ×÷ÕߣºXIN HUANG, KE DING, JINGYI LIU, ZILIN WANG, RONG TANG, LIAN XUE, HAIKUN WANG, QIANG ZHANG, ZHE-MIN TAN, AND AIJUN DING¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.add9843¡ø ÕªÒª£º¼«¶ËÒ°»ðÍþв×ÅÈËÀàÉúÃü¡¢¿ÕÆøÖÊÁ¿ºÍÉú̬ϵͳ×÷ÕßչʾÁËÌìÆø±ê×¼·´ÏìÔÚµØÖк£ºÍÃÀ¹úÎ÷º£°¶ºÍ¶«ÄÏÑǼ¾ÃñË׺òϵͳÖжÔÇý¶¯¼«¶Ë»ðÔÖµÄÖ÷Òª×÷ÓÃËûÃÇ·¢Ã÷ÑÌÎíÆøÈܽºµÄ·øÉäЧӦ¿ÉÒԸıä½üµØ±í·ç¡¢¿ÕÆø¸ÉÔïºÍ½µÓê´Ó¶øÍ¨¹ýÔöÇ¿»ðÑæÅÅ·ÅÒÔ¼°Ï÷ÈõÀ©É¢¼Ó¾ç¿ÕÆøÎÛȾҰ»ð¡¢ÑÌÎíºÍÌìÆøÖ®¼ä´í×ÛÖØ´óµÄÏ໥×÷ÓÃÐγÉÁËÒ»¸öÕý·´ÏìÑ»·´ó´óÔöÌíÁË¿ÕÆøÎÛȾµÄ̻¶¡ø Abstract£ºExtreme wildfires threaten human lives, air quality, and ecosystems. Here, we show the primacy of synoptic-scale feedback in driving extreme fires in Mediterranean and monsoon climate regimes in the West Coast of the United States and Southeastern Asia. We found that radiative effects of smoke aerosols can modify near-surface wind, air dryness, and rainfall and thus worsen air pollution by enhancing fire emissions and weakening dispersion. The intricate interactions among wildfires, smoke, and weather form a positive feedback loop that substantially increases air pollution exposure.The magmatic web beneath Hawai¡®iÏÄÍþÒĵرíϵÄÑÒ½¬Íø¡ø ×÷ÕߣºJOHN D. WILDING, WEIQIANG ZHU, ZACHARY E. ROSS, AND JENNIFER M. JACKSON¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.ade5755¡ø ÕªÒª£ºÏÄÍþÒĵºÊÇÓÉÖøÃûµÄĪÄÉ¿ËÑÇ»ðɽ¡¢ÄªÄÉÂÞÑÇ»ðɽºÍ»ùÀΤ¶ò»ðɽÐγɵÄÏÖÔÚ×î»îÔ¾µÄÊÇ»ùÀΤ¶ò»ðɽµ«ÆäËû»ðɽÈÔÈ»¿ÉÄܱ¬·¢×÷ÕßʹÓÃÁè¼Ý20Íò´ÎµØ¶¯ÊÂÎñ»æÖƳö40¹«ÀïÉî´¦Á÷ÈëÕâЩ»ðɽµÄÑÒ½¬µÄ¼¸ºÎÐÎ×´ÑÒ½¬ÐγÉÁËÅþÁ¬»ùÀΤ¶òºÍĪÄÉÂÞÑÇ»ðɽµÄ»ùÑÒ×ÛºÏÌå²¢ÇÒÓÐһЩÓëĪÄÉ¿ËÑÇ»ðɽÓйصÄÖ¤¾ÝÊÓ²ìЧ¹ûÅú×¢»ðɽ֮¼äÓиü´óµÄµØÏÂÁªÏµÎªÑÒ½¬ÔËÊäÌṩÁËÓÐȤµÄ¿´·¨¡ø Abstract£ºThe island of Hawai¡®i is shaped by its well-known volcanoes, Mauna Kea, Mauna Loa, and Ki?lauea. Although Ki?lauea is currently by far the most active, the other volcanoes could still erupt as well. Wilding et al. used more than 200,000 seismic events to map out the geometry of the magma feeding into these volcanoes at a 40-kilometer depth (see the Perspective by Flinders). The magma forms a sill complex that connects Ki?lauea and Mauna Loa, and there is some evidence of connection to Mauna Kea. The observations suggest far greater underground connections between the volcanoes and provide an interesting insight into magma transport.ÎïÀíѧPhysicsMedium-density amorphous iceÖÐÃܶȷǾ§±ù¡ø ×÷ÕߣºALEXANDER ROSU-FINSEN, MICHAEL B. DAVIES, ALFRED AMON, HAN WU, ANDREA SELLA, ANGELOS MICHAELIDES, AND CHRISTOPH G. SALZMANN¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abq2105¡ø ÕªÒª£ºË®±ùÓÐÐí¶à¾§ÌåÏàÉÐÓÐһЩÎÞ¶¨ÐÎ½á¹¹ÖØ´óµÄ½á¹¹Í¼¹ØÓÚÃ÷È·±ùµÄÖ÷ÒªÐÔºÜÖ÷ÒªRosu-FinsenµÈÈË·¢Ã÷ÁËÔÚµÍÎÂÏÂÇòÄ¥Áù·½±ùÐγɵÄÖÐÃܶȷǾ§±ùÆäÆæÒìµÄÃܶȺͽṹÓÐÖúÓÚ½«ÆäÈ·¶¨ÎªÒ»ÖÖÐÂÐÎʽµÄ±ù´Ó¶øÌá³öÁ˹ØÓÚÕâÖÖÖ÷ÒªÖÊÁϵÄÎȹÌÎÞ¶¨ÐνṹµÄÎÊÌâ¡ø Abstract£ºAmorphous ices govern a range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density and high-density amorphous ice with liquid water in the middle is a cornerstone of our current understanding of water. However, we show that ball milling ordinary ice Ih at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Notably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy, highlighting that H2O can be a high-energy geophysical material.
...µ±ÈÕÍâÉûÒ»¼Ò´ÓÍâµØÀ´º¼ÖÝÍâÉû½ÏÁ¿Ï²»¶ÍÚʯͷÍõÏÈÉú֮ǰÌý˵¹ýÓຼǧ᷿ÓÕâ±ßÓÐÐí¶àʯͷÒÔÊÇÕâ´ÎÀ´º¼ÖÝËûºÍ½ã½ãÁ½¼ÒÈË¿ª³µÀ´Â¶Óª
2025-09-22 21:00:34