»ìѪÌìʹmiki°É - °Ù¶ÈÌù°É"/> ½ñÄê¶à´Î¿ª³ö¡°1Íòµ×н+Ìá³É¡±µÄ¹ãÖÝijÐÂÄÜԴרÐÞµêÀϰåÁÖÏÈÉú¸æËß¼ÇÕߣ¬ËûµêÀï¾³£Óб¬·¢µç·¹ÊÕϵÄÈÈÃŵ糵ǰÀ´ÐÞ³µ£¬ÒòÈËÊÖȱ·¦£¬½öÓеÄ2ÃûÊÖÒÕʦ¸µ²»µÃ²»¼Ó°à¼Óµã£¬ÓÅÒìµÄÐÂÄÜÔ´Æû³µÎ¬ÐÞʦ¸µ¿ÉÓö²»¿ÉÇó¡£"/>
¡¶»ìѪÌìʹmiki°É - °Ù¶ÈÌù°É¡·¾çÇé¼ò½é£º½ñÄê¶à´Î¿ª³ö1Íòµ×н+Ìá³ÉµÄ¹ãÖÝijÐÂÄÜԴרÐÞµêÀϰåÁÖÏÈÉú¸æËß¼ÇÕßËûµêÀï¾³£Óб¬·¢µç·¹ÊÕϵÄÈÈÃŵ糵ǰÀ´ÐÞ³µÒòÈËÊÖȱ·¦½öÓеÄ2ÃûÊÖÒÕʦ¸µ²»µÃ²»¼Ó°à¼ÓµãÓÅÒìµÄÐÂÄÜÔ´Æû³µÎ¬ÐÞʦ¸µ¿ÉÓö²»¿ÉÇóÑî¿É¶ùÄêËêСÄãµÄÄêËêÒ²ºÜСôËý²»ÖªÊ¶ùÄãµÄÄÔ¿ÇÀïҲװ׎¬ºýôÄãÒ²¸øÎÒ¹ö¡¤¡¤¡¤¹öµÃÔ¶Ô¶µÄ¡¤¡¤¡¤¡¤¡¤¡¤¡¤»ìѪÌìʹmiki°É - °Ù¶ÈÌù°ÉÈýÄêÎŤÍÅÉúÑÄËý¸ø»ïʳ°à±¨¹ý²Ëµ¥ÌæÕ½ÓÑд¹ý´®³¡´ÊÓ²ÉúÉú°Ñ×Ô¼ºÄ¥³ÉÁËÍòÄÜÌæ²¹
¡¶»ìѪÌìʹmiki°É - °Ù¶ÈÌù°É¡·ÊÓÆµËµÃ÷£ºÄ½Èݸ´¸ßÎݽ¨ê²¹ßÁ˽ñÍíÒ»¶øÔÙÔÙ¶øÈýµÄ±»Õâ¸öÅ®È˱ÉÊÓîºÂîÄÇÀﻹ°´ÞàµÃסµ±ÏÂÒ²²»ÔÙÓÐËù¼Ç¹ÒÌì½£»ÓÎèÎÞÊýÆøÀ˾íÆðÐé¿ÕÇá²üÐìÐì´Ì³öÒ»½£¡õ Óà±ùÈç¡¶¿ÆÑ§¡·£¨20220722³öÊ飩һÖÜÂÛÎĵ¼¶Á2022-07-24 21:40¡¤¿ÆÑ§Íø±àÒë | ·ëάάScience, 22 July 2022, Volume 377 Issue 6604¡¶¿ÆÑ§¡·2022Äê7ÔÂ22ÈÕµÚ377 ¾í6604ÆÚÎïÀí»¯Ñ§Physical chemistryQuantum effects in thermal reaction rates at metal surfaces½ðÊôÍâòÈÈ·´Ó¦ËÙÂʵÄÁ¿×ÓЧӦ¡ø ×÷ÕߣºDMITRIY BORODIN, NILS HERTLG. BARRATT PARK, MICHAEL SCHWARZERJAN, ALEC M. WODTKE, etc.¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abq1414¡ø ÕªÒª£º×¼È·ÐÎòÍâò»¯Ñ§·´Ó¦µÄ»ù±¾°ì·¨ÊÇÒ»¸öºã¾ÃµÄÌôÕ½ÓÉÓÚȱ·¦¿É¿¿µÄʵÑéÕÉÁ¿ÏìÓ¦µÄËÙÂʳ£ÊýÕâʹËü²»¿ÉÄÜÑÏ¿áÑéÖ¤ÀíÂÛÔ¤¼Æ×ÝÈ»ÊÇÏñÇâÔ×ÓÔÚ²¬ÍâòµÄÈȸ´ºÏÕâÑù¼òÆÓµÄ·´Ó¦ÒÔǰµÄʵÑéËÙÂʳ£ÊýÒ²Ö´ÙÇÔںܴóµÄ²»È·¶¨ÐÔÏ»ñµÃµÄʹÓÃËÙÂÊÇø·Ö¶¯Á¦Ñ§ºÍ»ùÓÚÀë×Ó³ÉÏñµÄ¾ø¶Ô·Ö×ÓÊøÍ¨Á¿Ð£×¼×÷ÕßսʤÁËʵÑéÄÑÌⱨ¸æÁ˸÷´Ó¦ÔÚ¿íζȹæÄ£ÄڵĿÕǰ׼ȷµÄËÙÂʳ£ÊýËûÃÇ»¹Õ¹Ê¾ÁËÒ»¸ö¶¨Á¿ÔÙÏÖʵÑéµÄÎÞ²ÎÊýÄ£×ÓΪÈÕÒæÔöÌíµÄÅÌËã¶àÏà´ß»¯ÁìÓò¿ª·¢ÁËеÄÔ¶¾°¡ø Abstract£ºAccurate description of elementary steps of chemical reactions at surfaces is a long-standing challenge because of the lack of reliable experimental measurements of the corresponding rate constants, which also makes it impossible to rigorously validate theoretical estimates. Even for reactions as simple as thermal recombination of hydrogen atoms on platinum surfaces, previous experimental rate constants have only been obtained with large uncertainties. Using velocity-resolved kinetics and ion imaging¨Cbased calibration of absolute molecular beam fluxes, Borodin et al. managed to overcome established experimental difficulties and report unprecedentedly accurate rate constants for this reaction over a wide temperature range. They also demonstrate a parameter-free model that quantitatively reproduces the experiment, opening up new vistas for the growing field of computational heterogeneous catalysis.High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopyÓÃ˲̬·´ÉäÂÊÏÔ΢¾µÊÓ²ìÁ¢·½É黯ÅðµÄ¸ßË«¼«ÐÔǨáãÂÊ¡ø ×÷ÕߣºSHUAI YUE, FEI TIAN, XXINYU SUIMOHAMMADJAVAD MOHEBINIA, XIANXIN WUTIAN TONGZHIMING WANG, BO WU, QING ZHANG, XINFENG LIU¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abn4727¡ø ÕªÒª£ºÔÚÊÒÎÂÌõ¼þϰ뵼ÌåÁ¢·½É黯Åð£¨c-BAs£©¶Ôµç×ÓµÄÔØÁ÷×ÓǨáãÂÊΪ1400ƽ·½ÀåÃ×/·üÌØÃë¶Ô¿ÕѨµÄÔØÁ÷×ÓǨáãÂÊΪ2100ƽ·½ÀåÃ×/·üÌØÃëʹÓñÃ̽Õë˲̬·´ÉäÂÊÏÔ΢¾µÊÓ²ì¹âÒý·¢ÔØÁ÷×ÓÔÚµ¥¾§c-BAsÖеÄÀ©É¢ÒÔ»ñµÃÆäǨáãÂÊͨ¹ý¶Ô½ü´øÏ¶µÄ600ÄÉÃ×±ÃÆÖÂö³å×÷Õß·¢Ã÷¸ßµÄË«¼«Ç¨áãÂÊΪ1550¡À120ƽ·½ÀåÃ×/·üÌØÃëÓëÀíÂÛÕ¹ÍûÒ»ÖÂÔÚͳһËùÔÚ¾ÙÐеÄ400ÄÉÃױõÄÌØÊâʵÑéÏÔʾǨáãÂÊΪ>3000ƽ·½ÀåÃ×/·üÌØÃë×÷Õß½«Æä¹éÒòÓÚÈȵç×ÓÔÚʩչ×÷ÓøßÔØÁ÷×ÓǨáãÂʵÄÊÓ²ìÍŽá¸ßÈȵ¼ÂÊʹc-BAsÔÚ¸ßÐÔÄܵç×Ӻ͹âµç×ÓÁìÓòµÄ´ó×ÚÆ÷¼þÓ¦ÓóÉΪ¿ÉÄÜ¡ø Abstract£ºSemiconducting cubic boron arsenide (c-BAs) has been predicted to have carrier mobility of 1400 square centimeters per volt-second for electrons and 2100 square centimeters per volt-second for holes at room temperature. Using pump-probe transient reflectivity microscopy, we monitored the diffusion of photoexcited carriers in single-crystal c-BAs to obtain their mobility. With near-bandgap 600-nanometer pump pulses, we found a high ambipolar mobility of 1550 ¡À 120 square centimeters per volt-second, in good agreement with theoretical prediction. Additional experiments with 400-nanometer pumps on the same spot revealed a mobility of >3000 square centimeters per volt-second, which we attribute to hot electrons. The observation of high carrier mobility, in conjunction with high thermal conductivity, enables an enormous number of device applications for c-BAs in high-performance electronics and optoelectronics.High ambipolar mobility in cubic boron arsenideÁ¢·½É黯ÅðµÄ¸ßË«¼«ÐÔǨáãÂÊ¡ø ×÷ÕߣºJUNGWOO SHI, GEETHAL AMILA GAMAGE, ZHIWEI DING, KE CHEN, FEI TIAN, HWIJONG LEE, GANG CHEN, etc.¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abn4290¡ø ÕªÒª£º¾ßÓиßÈȵ¼Âʺ͸ߵç×Ó-¿ÕѨǨáãÂʵİ뵼Ì幨ÓÚµç×ÓÆ÷¼þºÍ¹â×ÓÆ÷¼þÒÔ¼°»ù´¡Ñо¿¾ßÓÐÖ÷ÒªÒâÒåÔÚÕâЩ³¬¸ßµ¼ÈÈÖÊÁÏÖÐÁ¢·½É黯Åð£¨c-BAs£©µÄµç×ӺͿÕѨǨáãÂʽ«Í¬Ê±µÖ´ï>1000ÀåÃׯ½·½/·üÌØ/ÃëʹÓùâѧ˲±ä¹âÕ¤ÊÖÒÕ×÷ÕßÔÚÊÒÎÂÏÂʵÑéÕÉÁ¿ÁËc-BAsÑùÆ·µÄÏàͬλÖÃÆäÈȵ¼ÂÊΪÿÃ×ÿ¿ª¶ûÎÄ1200ÍßË«¼«Ç¨áãÂÊΪÿ·üÌØÃ¿Ãë1600ƽ·½ÀåÃ×ÖØÐÂÅÌËãÅú×¢½µµÍµçÀëÔÓÖÊŨ¶ÈºÍÖÐÐÔÔÓÖÊŨ¶ÈÊÇ»ñµÃ¸ßǨáãÂʺ͸ßÈȵ¼ÂʵÄÒªº¦ÓÉÓÚ¾ßÓиߵÄË«¼«ÐÔÒÆ¶¯ÐԺͳ¬¸ßµÄÈȵ¼ÂÊc-BAsÓÐÍû³ÉΪÏÂÒ»´úµç×Ó²úÆ·µÄºòÑ¡ÖÊÁÏ¡ø Abstract£ºSemiconductors with high thermal conductivity and electron-hole mobility are of great importance for electronic and photonic devices as well as for fundamental studies. Among the ultrahigh¨Cthermal conductivity materials, cubic boron arsenide (c-BAs) is predicted to exhibit simultaneously high electron and hole mobilities of >1000 centimeters squared per volt per second. Using the optical transient grating technique, we experimentally measured thermal conductivity of 1200 watts per meter per kelvin and ambipolar mobility of 1600 centimeters squared per volt per second at the same locations on c-BAs samples at room temperature despite spatial variations. Ab initio calculations show that lowering ionized and neutral impurity concentrations is key to achieving high mobility and high thermal conductivity, respectively. The high ambipolar mobilities combined with the ultrahigh thermal conductivity make c-BAs a promising candidate for next-generation electronics.»¯Ñ§ChemistryPhysical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration´ß»¯¼ÁºÍÊèË®¾ÛºÏÎïµÄÎïÀí»ìÏýͨ¹ýÍÑË®Ôö½øÒ»Ñõ»¯Ì¼Ç⻯¡ø ×÷ÕߣºWEI FANG, CHENGTAO WANG, LIANG WANG, LU LIU, HANGJIE LI, FENG-SHOU XIAO, etc.¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abo0356¡ø ÕªÒª£ºÔÚÐí¶àÊÜË®ÏÞÖÆµÄ·´Ó¦ÖÐÑ¡ÔñÐԵشӷ´Ó¦ÏµÍ³ÖÐÈ¥³ýË®ÖÁ¹ØÖ÷Ҫͨ³£ÐèҪĤ·´Ó¦Æ÷×÷Õß·¢Ã÷ÊèË®¾Û¶þÒÒÏ©±½ÓëîÜÃÌ̼»¯ÎïµÄ¼òÆÓÎïÀí»ìÏýÎï¿ÉÒÔµ÷Àí´ß»¯¼ÁµÄ¾Ö²¿ÇéÐÎÒÔ¿ìËÙÔËÊäºÏ³ÉÆø×ª»¯ÖеÄË®²úÆ·ÕâÄܹ»¸Ä±ä´ß»¯¼ÁÍâòµÄË®Îü¸½Æ½ºâµ¼Ö¸ü´ó±ÈÀýµÄ×ÔÓÉÍâò·´¹ýÀ´½«ºÏ³ÉÆø×ª»¯ÂÊÌá¸ß½ü2±¶ÔÚ250¡æÌõ¼þÏÂÒ»Ñõ»¯Ì¼×ª»¯Âʵִï63.5%71.4%µÄÌþÀà²úƷΪÇáÏ©ÌþÓÅÓÚÒ»ÂÉÌõ¼þϵÄÎÞ¾Û¶þÒÒÏ©±½´ß»¯¼ÁÎïÀí»ìÏýîÜÃÌ̼/¾Û¶þÒÒÏ©±½´ß»¯¼ÁÔÚ120СʱµÄÒ»Á¬²âÊÔÖоßÓÐÓÅÒìµÄÄ;ÃÐÔ¡ø Abstract£ºIn many reactions restricted by water, selective removal of water from the reaction system is critical and usually requires a membrane reactor. We found that a simple physical mixture of hydrophobic poly(divinylbenzene) with cobalt-manganese carbide could modulate a local environment of catalysts for rapidly shipping water product in syngas conversion. We were able to shift the water-sorption equilibrium on the catalyst surface, leading to a greater proportion of free surface that in turn raised the rate of syngas conversion by nearly a factor of 2. The carbon monoxide conversion reached 63.5%, and 71.4% of the hydrocarbon products were light olefins at 250¡ãC, outperforming poly(divinylbenzene)-free catalyst under equivalent reaction conditions. The physically mixed CoMn carbide/poly(divinylbenzene) catalyst was durable in the continuous test for 120 hours.ÎïÀíѧPhysicsAmplified emission and lasing in photonic time crystals¹â×Óʱ¼ä¾§ÌåÖеķŴó·¢ÉäºÍ¼¤¹â¡ø ×÷ÕߣºMARK LYUBAROV, YAAKOV LUMERALEX DIKOPOLTSEV, ERAN LUSTIG, YONATAN SHARABIAND MORDECHAI SEGEV¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abo3324¡ø ÕªÒª£º¹æÔò¹â×Ó¾§ÌåÊÇÒ»ÖÖÕÛÉäÂʾßÓпռäÖÜÆÚÐԵĽṹ¿ÉÒÔÒÖÖÆ½á¹¹ÖÐǶÈëµÄ·¢ÉäÆ÷µÄ×Ô¾õ¹â·¢ÉäÔÚ¹â×Óʱ¼ä¾§ÌåÖÐÕÛÉäÂÊÔÚ³¬¿ìʱ¼ä±ê×¼ÉÏÖÜÆÚÐԵص÷ÖÆ×÷Õß´ÓÀíÂÛÉÏ̽Ë÷Á˵±Ò»¸ö·¢ÉäÆ÷±»°²ÅÅÔÚÕâÑùÒ»¸öʱ¼ä¾§ÌåÖлᱬ·¢Ê²Ã´ÓëͨÀý¹â×Ó¾§ÌåÏà±È×÷Õß·¢Ã÷ʱ¼ä¾§ÌåÓ¦¸Ã·Å´ó·¢É䱬·¢¼¤¹â¡ø Abstract£ºRegular photonic crystals are structures in which the refractive index is spatially periodic and can suppress the spontaneous emission of light from an emitter embedded in the structure. In photonic time crystals, the refractive index is periodically modulated in time on ultrafast time scales. Lyubarov et al. explored theoretically what happens when an emitter is placed in such a time crystal. In contrast to the regular photonic crystals, the authors found that time crystals should amplify emission, leading to lasing.ÉúÎï¶àÑùÐÔBiodiversityInterspecific competition limits bird species¡¯ ranges in tropical mountainsÖּ侺ÕùÏÞÖÆÁËÈÈ´øÉ½ÇøÄñÀàµÄÔ˶¯¹æÄ£¡ø ×÷ÕߣºBENJAMIN G. FREEMAN, MATTHEW STRIMAS-MACKEY AND ELIOT T. MILLER¡ø Á´½Ó£ºhttps://www.science.org/doi/10.1126/science.abl7242¡ø ÕªÒª£ºÎïÖֵĵØÀí¹æÄ£Êܵ½ÌìÆøºÍÎïÖÖÏ໥×÷ÓõÄÏÞÖÆÌìÆøÊÇÚ¹ÊÍΪʲôÎïÖÖÖ»ÄÜÉúÑÄÔÚ¼«¾ßÉúÎï¶àÑùÐÔµÄÈÈ´øÉ½ÂöµÄÏÁÕº£°Î¹æÄ£Ä򵀮ͱéÔµ¹ÊÔÓɵ«¾ºÕùÒ²»áÏÞÖÆÎïÖֵĺ£°Î¹æÄ£×÷Õßͨ¹ýÔÚ31¸öɽµØµØÇø¾ÙÐÐÄñÀຣ°Î¹æÄ£¾ÞϸµÄÈ«Çò½ÏÁ¿²âÊÔÀ´Ä¥Á·ÕâЩ¼ÙÉèµÄ±ÈÕÕÕ¹ÍûʹÓÃÀ´×ÔÈ«Çò¹«ÃñÏîÄ¿eBirdµÄ440¶àÍò¹«Ãñ¿ÆÑ§¼Í¼À´½ç˵ÿ¸öµØÇøÎïÖֵĺ£°Î¹æÄ£ËûÃÇÕÒµ½ÁËÇ¿ÓÐÁ¦µÄÖ¤¾Ý֤ʵ¾ºÕù¡¢¶ø·ÇÌìÆøÊÇÏÁÕº£°Î¹æÄ£µÄÖ÷ÒªÇý¶¯ÒòËØÕâЩЧ¹ûÇ¿µ÷ÁËÎïÖÖÏ໥×÷ÓÃÔÚËÜÔìÈÈ´øÉ½ÇøÎïÖÖÂþÑܹæÄ£ÖеÄÖ÷ÒªÐÔÈÈ´øÉ½ÇøÊǵØÇòÉÏ×îÈÈÃŵÄÉúÎï¶àÑùÐÔÈÈÃŵØÇø¡ø Abstract£ºSpecies¡¯ geographic ranges are limited by climate and species interactions. Climate is the prevailing explanation for why species live only within narrow elevational ranges in megadiverse biodiverse tropical mountains, but competition can also restrict species¡¯ elevational ranges. We test contrasting predictions of these hypotheses by conducting a global comparative test of birds¡¯ elevational range sizes within 31 montane regions, using more than 4.4 million citizen science records from eBird to define species¡¯ elevational ranges in each region. We find strong support that competition, not climate, is the leading driver of narrow elevational ranges. These results highlight the importance of species interactions in shaping species¡¯ ranges in tropical mountains, Earth¡¯s hottest biodiversity hotspots.
2024Äê12Ô½òÄÏÇøÈËÁ¦×ÊÔ´ºÍÉç»á°ü¹Ü¾ÖÈ϶¨ÀöÀöÊܵ½µÄ´´É˺óÓ¦¼¤ÕϰÇкϹ¤ÉËÈ϶¨¹æÄ£ÓèÒÔÈ϶¨Îª¹¤ÉË
ÔÚº®¾§µÄ×îá¯ÁëáÛÖÐØùÁ¢×ÅÒ»×ù±ùÑ©´óµî×îºóÒ»¸ö½ÇÖðÈյįöÖþÏîÄ¿Èü³¡
2025-09-24 09:29:53